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Mesoscale numerical models

o Mesoscale numerical models are designed for simulation and
forecasting of mesoscale processes (2-2000 km)

o Based on conservation of momentum, energy and mass + moisture

o Allow for evolution of phenomena not contained in global models
(challenging terrain, convection,...)
o Mesoscale atmospheric models are used in two “modes”

1. simulation mode - for analysis and documentation of the atmosheric
phenomena (due to the lack of the dense observation networks)

2. prediction mode (only if 1., we can hope for 2.)

a Principal questions:
How well does a mesoscale model simulate the required process?
Does the refinement in resolution increases the model accuracy?
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A typical mesoscale model setup

“"The model chain”

Global reanalysis/forecast
e.g., NCEP/NCAR or ECMWF
Grid increment ~20-100 km

OUTER MESOGRID (mesoDA?, DFI?)

‘one-way’ nesting  ‘two-way’

NESTED DOMAINS 1, 2,...
The final resolution is ideally chosen
knowing the properties of the process
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The mesoscale model accuracy

o However, constraints do exist,
especially in (the 3D vicinity of)
complex terrain, such as:

Initiation

Numerical instabilities

Mixing in SABL

And many others...
o —> lower accuracy in complex terrain
a Eg. Dynamical downscaling

o ALADIN model, D1=8 km, D2=2 km

a 37 lev, Kuo-Geleyn CPS, Louis PBL Continental 019
o2 10yrs, ERA-40 Coastal 0.55
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The mesoscale model accuracy

a In complex terrain, it is expected that ALHR

models benefit from resolution (i.e. 3 2
due to better resolved lower BCs)

o However, the benefit:

= Is not always easy to show due to
“double penalty” errors

= Is not always found

WRF&MM5
Dx=27km-0.333km
MYJ PBL, KF (d1,2)
Thompson MPS

Decomp. of RMSE:
-bias of the mean
-bias of the st. dev
-dispersion error
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RMSE decomposition terms [m/s]
RMSE decomposition terms [m/s]

THEMWS




The mesoscale model accuracy

a For verification of occasional phenomena (meteotsunamis),
systematic verification is typically less important

a The criteria of success is the realism of the simulated process (visual
inspection)

a This is the most referenced benefit of high-resolution mesoscale
modeling
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The assessment of the model accuracy

o Nevertheless, integral properties of the models reveal many useful
information for designing the modeling setup for case studies:

a 1. What is the resolution required to simulate well the energy of
motions in the area

Integrated spectral power density functions over the frequency range
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The assessment of the model accuracy

o 2 . What is the effective model resolution?

= Kinetic energy spectrum — deviation from the expected values—> reveals
which modes (wavelenghts) in the model are dynamically suspect

WRF (Skamarock, 2004) ALADIN&ECMWF
10° 4 km forecast,
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The assessment of the model accuracy

o Spectral energy densities of vorticity and divergence
= Highly-variable vertical structure (varB, instabilities&div. damping)
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Mesoscale models, mesoscale gravity waves & convection

a The most common atmospheric components of meteotsunamis are
internal mesoscale gravity waves (IMGW) and convection

o IMGW (linear) are analytically well descrlbed and are also of the
trademarks of mesoscale models
o IMGW originate from:
= Orography (studied the most)
= Moist convection
= Mesoscale instabilities
= Geostrophic adjustment
= Surface heating or cooling
= Density currents, and other

1716 4850

a They transfer E between scales, transport E and M in space, trigger
instabilities > severe weather & Cbs and organize them into larger-
scale convective storms...
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Mesoscale models, mesoscale gravity waves & convection

o IMGW:s are generally dispersive and quickly lose their energy

a2 However, IMGWSs associated with meteotsunamis have commonly
traveled far away from the source of origin

o The maintenance mechanisms of IMGWSs away from the area of origin:
a 1. Wave ducting mechanism
The IMGW energy is trapped in the lower layer
a 2. Wave-CISK mechanism
The IMGW is externally re-inforced
o 3. Solitary wave mechanism
A mechanism such that the IMGW dissipation is balanced

o These mechanisms generally apply to long-lived large-amplitude
IMGWs (isolated waves or wave packets):

Periods 1-4 h, horizontal wavelengths of 50-500 km, surface pressure
perturbation amplitudes of 0.2 — 7 hPa
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Wave duct

o The most common conditions for a duct (Lindzen and Tung, 1976):

= The lower layer must be statically stable and sufficiently thick to
accommodate Y of the vertical wave-length

= A reflective layer must be present above the duct (shear, Ri<0.25) and a
critical level must be inexistent within the stable layer

a LT is a subset of possible ducted modes (Wang and Lin, 1999)
o Mesomodels are able to simulate basic duct conditions

_ Sepi¢ et al., 2009
Wang and Lin, 1999 —
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Wave-CISK

a  The 2"d mechanism proposed for meteotsunami-related wave
maintenance is Wave-CISK (Conditional Instability of the Second Kind)

a Moist convection - Latent heating - Low level convergence

=1Bclusic et al,

o Wave-CISK may conceptually work, but some deficiencies have been
raised (LH-LLC, large sensitivity)

a Convection-resolving modeling is a must
o Both duct and wave-CISK may act together (Tanaka, 2009)
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Convection

o What's the resolution required for an explicit simulation of convection?

o Depends on the individual case, but generally references suggest
100m (individual cells) < dx < 4 km (large convective systems)

o Higher-resolution may not necessarily bring the improved performance
o Mesomodels were used to simulate conv. jumps (Renault et al., 2011)

Casel — flash flood in s. Italy Case2 — flash flood in Dubrovnik
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Solitary waves

a Have been observed in the atmosphere
o SW propagate without the change of form
o Balance between non-linearity and dispersion

o Can result in isolated or multiple pressure
waves of elevation or depression

Koch et al.,
2008

Height (km)

ettt donn
Distanca (km)
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Modeling of IMGW

o Simulations of IMGW may be challenging

a In numerical models, IMGWSs are not only dispersive due to physical

but also for numerical reasons

) ) i i Schroeder&Schlunzen, 2009
o Whereas the physical dispersion is

mostly influenced by static stability, in
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Modeling of IMGW

a If the grid spacing is non-uniform (two-way nesting, adaptive
grids), waves from the fine grid might not be resolved in the
coarse grid - reflection (trapping) in the fine grid
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Other modeling issues

a 1. Some numerical diffusion is required to keep the mesoscale
models stable (Takemi and Rotunno, 2003)
a E. g types of diffusion in WRF:

Implicit diffusion (odd-number advection operator, RK3 time
integration schemes)

Explicit diffusion on coordinate surfaces or in physical space
6th-order diffusion (filter on scales of several grid points)
= Vertical mixing within the PBL scheme
a 2. In models, IMGW can be generated by dynamic or

thermodynamic imbalances (caused by numerical noise or
unbalanced initial conditions)

Is spin-off a solution for already initially ducted environment?

o 3. If dx ~1 km, considerate computing resources required for both
(sensitivity) simulations and forecasting
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Conclusions

a Convection-resolving modeling is essential

o Modelling of IMGWSs with wavelengths comparable to or less than
~15dx is numerically delicate

o Additional source of uncertainty is a proper simulation of their
maintenance mechanism and the required environment

a The ability of mesomodels to simulate convection depends on the
type of the convective system

a  Once the phenomenon (IMGW, convection) is simulated, time-
space errors are likely

a The larger the scales of IMGW/convection, the larger are chances
for the accurate mesoscale simulation
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